Durio Zibethinus Murr. Peel and Zeolite In Reducing the Hardness of Water

  • Sri Poerwati Department of Environmental Health, Poltekkes Kemenkes Surabaya
  • Siti Nabila Namiroh Department of Environmental Health, Poltekkes Kemenkes Surabaya
  • Mujiyono Mujiyono Department of Environmental Health, Poltekkes Kemenkes Surabaya
Keywords: Durio zibethinus Murr., zeolite, hardness


Hardness is water that contains metals or cations with two valences, especially calcium (Ca) and magnesium (Mg). Excessive hard water can cause detergents to not easily foam, be corrosive to household furniture and interfere with health such as kidney stone disease. This study aimed to test the filtration ability of a combination of Durio zibethinus Murr. peel activated charcoal with zeolite to reduce hardness in water. This study was a true experimental study with a pretest-posttest control group design using three variations of Durio zibethinus Murr. peel thickness 7 cm, 9 cm, 11 cm and zeolite 70 cm. The sampling method used was grappample with 9 replications and analyzed using the Anova statistical test. The results of the filtration hardness of the combination of Durio zibethinus Murr. peel activated charcoal) and zeolite 70 cm thickness with a thickness of 7 cm activated charcoal obtained an average of 107.18 mg/l. The thickness of activated charcoal 9 cm on average was 88.74 mg/l. The thickness of activated charcoal 11 cm on average was 71.40 mg/l. The result of One Way Anova statistical test (0.000) is smaller than (0.05), so the hypothesis is accepted. So there is a difference in the decrease in water hardness in variations in the thickness of the media for Durio zibethinus Murr. peel activated charcoal and zeolite. In future research, the thickness of Durio zibethinus Murr. peel activated charcoal (Durio zibethinus Murr.) and the thickness of zeolite which is more effective in reducing hardness can be determined, using Durio zibethinus Murr. peel activated charcoal and zeolite filtration by flowing water into the pipe for 5 minutes and performing further treatment of water to make it clear.


Download data is not yet available.


Kodoatie, “Groundwater Spatial Planning Yogyakarta,” 2013.

D. Chapman, Water Quality Assesment-A Guide to Use of Biota, Sediments and Water in Enviromental Monitoring. 2000.

H. E. Asgari, G. Mohammadi, A.S. Ebrahimi, A., “Adsorption of Phenol Form Aqueous Solution By Modified Zeolite with FeCl3,” Int. J. Envromental helath Eng., 2013.

D. of Health, “Minister of Health Regulation No. 416/MENKES/PER/IX/1990.” 1990.

Yuliusman, M. P. Ayu, A. Hanafi, and A. R. Nafisah, “Activated carbon preparation from durian peel wastes using chemical and physical activation,” AIP Conf. Proc., vol. 2230, no. July, 2020, doi: 10.1063/5.0002348.

S. Miskah, T. Aprianti, M. Agustien, Y. Utama, and M. Said, “Purification of Used Cooking Oil Using Activated Carbon Adsorbent from Durian Peel,” IOP Conf. Ser. Earth Environ. Sci., vol. 396, no. 1, 2019, doi: 10.1088/1755-1315/396/1/012003.

Z. M. Lazim, T. Hadibarata, M. H. Puteh, Z. Yusop, R. Wirasnita, and N. Mohd Nor, “Utilization of durian peel as potential adsorbent for bisphenol a removal in aquoeus solution,” J. Teknol., vol. 74, no. 11, pp. 109–115, 2015, doi: 10.11113/jt.v74.4879.

Kumari, “The Estimation of Hardness In Ground Water Samples Bydta Trtrimetric Method,” J. Appl. Chem., 2016.

B. H. Dang, T.-N., & Nguyen, “Study on Durian Processing and Defleshing Machine,” Asia Pacifik J. Sustain. Agric. Foot Energy, vol. 3, no. 1, pp. 12–16, 2015, [Online]. Available: http://journal.bakrie.ac.id/index.php/APJSAF.

M. F. M. Yusop, M. A. Ahmad, N. A. Rosli, F. N. Gonawan, and S. J. Abdullah, “Scavenging malachite green dye from aqueous solution using durian peel based activated carbon,” Malaysian J. Fundam. Appl. Sci., vol. 17, no. 1, pp. 95–103, 2021, doi: 10.11113/MJFAS.V17N1.2173.

W. Federer, “Experimental Design Theory and Application Oxfor,” Oxford Lbh Publ. Hinco, 1963.

Y. Febriansyah, B., Chairu, “Making Activated Carbon from Durian Peel as Fe Metal Adsorbent,” Fteknik, 2015.

D. T. G. H. Tran Duy Kha, “Research On Synthetic Methods For Activated Carbon Materials From Durian Peels To Decolorize Blue 220 In Textile Dye Waste waterjournal of Science,” vol. 18 (9), 2021.

M. Ketteler et al., “Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters,” Kidney Int., vol. 92, no. 1, pp. 26–36, 2017, doi: 10.1016/j.kint.2017.04.006.

R. F. Derouane EG, Lemos F, Naccache C, Zeolite Microporous Solids: Synthesis, Structure, and Reactivity. 2012.

M. C. Haouas M, Lakiss L, “Silicate Ionic Liquid Synthesis of Zeolite Merlinoite : Crystal Size Control From Crystals,” Microporous Mesoporous Mater, 2014.

T. S. Ninan N, Grohens Y, Elain A, kalarikkal N, “Synthesis and Characterisation of Gelatin/Zeolite Porousscaffold,” Eur Polym J, 2013.

P. T. K. Le and K. A. Le, “Optimisation of durian peel based activated carbon preparation conditions for dye removal,” Sci. Technol. Dev. J., vol. 16, no. 1, pp. 22–31, 2013, doi: 10.32508/stdj.v16i1.1384.

Yuliusman, M. P. Ayu, A. Hanafi, and A. R. Nafisah, “Adsorption of carbon monoxide and hydrocarbon components in motor vehicle exhaust emission using magnesium oxide loaded on durian peel activated carbon,” AIP Conf. Proc., vol. 2230, no. May, 2020, doi: 10.1063/5.0002351.

H. Z. Harraz, “Zeolite and its uses,” no. March, 2017, doi: 10.13140/RG.2.2.34536.47365.

A. Selvarajoo, “Slow pyrolysis of Durio zibethinus rind and the influence of carbonization temperature on biochar properties,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1092, no. 1, p. 012042, 2021, doi: 10.1088/1757-899x/1092/1/012042.

M. Payam, Ghader, Saeed, hamed, Mohsen, Morteza, Ganjali, Bruno, Kim, Josh, Sajjad, Saeb, “Zeolite in Tissue Engineering: Opportunities and Challenges.,” MedComm, vol. 1 (1), 2020.

Z. P. mahmodi G, Dangwal S, NaA Zeolite-coated Meshes With Tunable Hydrophilicity for oil-water separation. 2020.

M. F. J. D. . Tanasale, I. . Sutapa, and R. . Topurtawy, “Ind. J. Chem. Res. , 2014, 2, 116 - 121,” vol. 2, pp. 116–121, 2014.

S. Charoenvai et al., “Heat and moisture transport in durian fiber based lightweight construction materials,” Sol. Energy, vol. 78, no. 4 SPEC. ISS., pp. 543–553, 2005, doi: 10.1016/j.solener.2004.03.013.

S. Alimano, “Reduction of the Size of the Adsorbent to increase the diameter of the pores in an effort to increase the Adsorptionefficiency of used Cooking Oil,” J. Environ. Eng., 2014.

W. Song, Chu, Cooperativity of Adjacent Bronsted Acid Sites in MFI zeolite Channel Leads to Enhanched Polarization and Cranking of Alkanes. 2017.

M. Napitupulu, D. K. Walanda, Y. Natakusuma, M. Basir, and Mahfudz, “Capacity of adsorption of Cadmium (II) ion by bio-charcoal from Durian barks,” J. Surf. Sci. Technol., vol. 34, no. 1–2, pp. 30–36, 2018, doi: 10.18311/jsst/2018/11055.

How to Cite
S. Poerwati, S. N. Namiroh, and M. Mujiyono, “Durio Zibethinus Murr. Peel and Zeolite In Reducing the Hardness of Water”, Jurnal Teknokes, vol. 15, no. 2, pp. 124-128, Jun. 2022.
Environtmental Health and Engineering