Nine Channel Data Logger to Measure Temperature Distribution on Dry Stelizer based on Andoid system

  • Anita Miftahul Maghfiroh Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Singgih Yudha Setiawan Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Bayu Trisono Aji Pambudi Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Steyve Nyatte University of Douala Cameroon
Keywords: Data Logger, Thermocouple Type K, Max6675, Bluetooth, Blynk

Abstract

A temperature measurement in sterilization is needed to find out whether the temperature setting has been reached, because if the tool is operated continuously it will have an impact on the performance of the tool. Data logger is a tool used to record time and temperature by recording. The purpose of this research is to develop technological advances with remote or automated systems that can monitor changes in temperature rise and fall. This study uses 9 types of K-type thermocouple sensors as temperature gauges which are placed at 9 specified points. A thermocouple is connected to the MAX6675 module for conversion which initially detects temperature into digital form data. Data processing uses the Arduino Mega 2560 system and the Arduino programming software processor. HC-05 is used as a data transmission of measured results that have been read where the results are displayed on Android using the Blynk application, the data sent will be in the form of Excel. This tool uses a temperature comparison from the MEMMERT UN 55 incubator in the microbiology laboratory. The error value contained in the 100°C temperature adjustment is 2.6% at a temperature of 1, the smallest error at temperatures 7 and 8 is 0.2% due  to the location of the sensor far from the heater. The error value at a temperature of 150°C is 1.7%, the smallest error at temperature 5 is 0.3%, 0.5%. The error value at a temperature of 200°C is 1.8%, the smallest error at temperature 0.5%. This research is expected to make it easier for users to simultaneously monitor temperature and simplify data processing to obtain an accuracy error value in the unit under test (UUT).

Downloads

Download data is not yet available.

References

G. Nhivekar and R. Mudholker, “Data logger and remote monitoring system for multiple parameter measurement applications,” J. Electr. Electron. Eng., vol. 4, no. 1, pp. 139–142, 2011.

M. Rofi’i and D. Titisari, “Calibration waterbath 9 (channel),” Jeemi, vol. 1, no. 1, pp. 1–6, 2019, doi: 10.1234/jeeemi.v1i1.9xx.

S. Badhiye, S. S. Badhiye, P. N. Chatur, and B. V Wakode, “Data Logger System: A Survey,” Int. J. Comput. Technol. Electron. Eng., no. January 2011, p. 2011, 2011.

M. B. Waghmare and P. N. Chatur, “Temperature and Humidity Analysis using Data Logger of Data Acquisition System: An Approach,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 1, pp. 102–106, 2012.

C. D. Okwudibe and B. O. Akinloye, “Design and simulation of temperature data logger,” Am. J. Eng. Res., no. 6, pp. 14–19, 2017.

V. Essien, C. A. Bolu, J. Azeta, I. P. Okokpujie, O. Kilanko, and S. A. Afolalu, “Application of Data Logger for Monitoring Indoor and Outdoor Temperature of Buildings: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1107, no. 1, p. 012181, 2021, doi: 10.1088/1757-899x/1107/1/012181.

A. Kumar, I. P. Singh, and S. K. Sud, “Design and development of multi-channel data logger for built environment,” Proc. Int. MultiConference Eng. Comput. Sci. 2010, IMECS 2010, vol. II, pp. 993–998, 2010.

M. Noriega et al., “Thermocouples calibration and analysis of the influence of the length of the sensor coating,” J. Phys. Conf. Ser., vol. 582, no. 1, 2015, doi: 10.1088/1742-6596/582/1/012029.

L. Zhanqiang and Z. Shijun, “Development of a thermocouple sensor using tool coating and its substrate to measure metal turning temperatures,” Int. J. Mater. Prod. Technol., vol. 46, no. 1, pp. 71–80, 2013, doi: 10.1504/IJMPT.2013.052791.

A. D. Korawan, “Rancang Bangun Data Logger Temperatur,” J. Electron. Electromed. Eng. Med. Informatics, vol. 12, no. 2, pp. 12–14, 2018.

M. H. Bin Zohari and M. F. Bin Johari, “Weather monitoring system using blynk application,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 1315–1319, 2019, doi: 10.35940/ijitee.L3666.119119.

F. Hidayanti*, “Implementation of Blynk Internet of Things Platform for Benzene Gas Monitoring System on Density Laboratory,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 4, pp. 1090–1094, 2020, doi: 10.35940/ijitee.d1563.029420.

K. P., “A Sensor based IoT Monitoring System for Electrical Devices using Blynk framework,” J. Electron. Informatics, vol. 2, no. 3, pp. 182–187, 2020, doi: 10.36548/jei.2020.3.005.

ITead Studio, “HC - 05 - Bluetooth to Serial Port Module (Datasheet),” Datasheet, vol. 2, p. 1, 2010.

S. Sadi and S. Mulyati, “TEMPERATURE MONITORING USING HC-05 MODULE BASED ON ANDROID,” J. Tek., vol. 8, Mar. 2019, doi: 10.31000/jt.v8i2.1623.

Rizkiyatussani, Her Gumiwang Ariswati, and Syaifudin, “Five Channel Temperature Calibrator Using Thermocouple Sensors Equipped With Data Storage,” J. Electron. Electromed. Eng. Med. Informatics, vol. 1, no. 1, pp. 1–5, 2019, doi: 10.35882/jeeemi.v1i1.1.

E. Rəduca et al., “Web server with ATMEGA 2560 microcontroller,” IOP Conf. Ser. Mater. Sci. Eng., vol. 106, no. 1, 2016, doi: 10.1088/1757-899X/106/1/012018.

T. Juwariyah, S. Prayitno, L. Krisnawati, and S. Sulasminingsih, “Design of IoT-Based Home Fire Detection System Equipped with a Data Logger,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1125, no. 1, p. 012079, 2021, doi: 10.1088/1757-899x/1125/1/012079.

N. N. Mahzan et al., “A Design of Smart IoT-Based Using Arduino,” J. Phys. Conf. Ser., vol. 1529, no. 2, pp. 1–9, 2020, doi: 10.1088/1742-6596/1529/2/022045.

Y. PRABOWO, G. PURWANTO, and A. H. NUDIN, “Prototype of Feeding Control System, Automatic Harvest Using Blynk Application Based on Arduino Uno R3 Microcontroller and Nodemcu,” Iccd, vol. 3, no. 1, pp. 452–456, 2021, doi: 10.33068/iccd.vol3.iss1.399.

R. Septiana, I. Roihan, and R. A. Koestoer, “Testing a calibration method for temperature sensors in different working fluids,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 68, no. 2, pp. 84–93, 2020, doi: 10.37934/ARFMTS.68.2.8493.

Y. Kusumawardani, E. Dian Setioningsih, and D. Titisari, “Water Bath Calibration Device with Data Storage Using Six Thermocouple Sensor,” J. Electron. Electromed. Eng. Med. Informatics, vol. 2, no. 2, pp. 40–47, Jul. 2020, doi: 10.35882/jeeemi.v2i2.2.

M. Safitri, A. Pranaditya, B. Handoko, and S. Anggoro, “Design and implementation of automatic autoclave temperature and pressure data recording system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012081, 2021, doi: 10.1088/1757-899x/1088/1/012081.

R. M. PARK, “Thermocouple Fundamentals,” Wire, pp. 12–26, 1821.

Syarifatul Ainiyah, D. H. Andayani, A. Pundji, and M. Shaib, “Development of Incubator Analyzer Based on Computer with Temperature And Humidity Parameters,” J. Electron. Electromed. Eng. Med. Informatics, vol. 2, no. 2, pp. 48–57, Jul. 2020, doi: 10.35882/jeeemi.v2i2.3.

O. R. Yunita, D. Titisari, and T. Hamzah, “Kalibrator Suhu dengan Thermocouple Dilengkapi dengan Tampilan Grafik,” J. Teknokes, vol. 13, no. 1, pp. 32–42, 2020, doi: 10.35882/teknokes.v13i1.5.

A. Z. Febriyanti, P. C. Nugraha, and Syaifudin, “Temperature calibrator using thermocouple based on microcontroller,” Ijeemi, vol. 2, no. 1, pp. 13–20, 2020, doi: 10.35882/ijeeemi.v2i1.3.

W. Widhiada, T. G. T. Nindhia, I. N. Gantara, I. N. Budarsa, and I. N. Suarndwipa, “Temperature stability and humidity on infant incubator based on fuzzy logic control,” ACM Int. Conf. Proceeding Ser., no. April, pp. 155–159, 2019, doi: 10.1145/3330482.3330527.

Published
2022-09-21
How to Cite
[1]
A. Maghfiroh, S. Setiawan, B. Trisono Aji Pambudi, and S. Nyatte, “Nine Channel Data Logger to Measure Temperature Distribution on Dry Stelizer based on Andoid system”, Jurnal Teknokes, vol. 15, no. 3, pp. 167-173, Sep. 2022.
Section
Biomedical Engineering

Most read articles by the same author(s)