Smartband for Heartbeat and Oxygen Saturation Monitoring with Critical Warning to Paramedic via IoT

  • I Dewa Gede Hari Wisana Wisana Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Priyambada Cahya Nugraha Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Farid Amrinsani Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Fani Ferina Sani Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Yusita Indhira Anwar Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya
  • Satheeshkumar Palanisamy Anna University, India
Keywords: Covid-19, BPM, SpO2, IoT


There are vital signs in the human body that indicate important physiological values for the body. In the COVID-19 pandemic, some of the important vital signs that must be monitored are BPM (Beats Per Minute) and SpO2 (oxygen saturation) as indicators of whether a person is in good health or lacks oxygen to predict the early symptoms of COVID-19. The purpose of this study is to create a device on the patient's wrist that can monitor BPM and SpO2 in real-time, as well as provide notifications on smartphones and emails when the patient's condition is abnormal. The contribution of this study is to implement an IoT (Internet of Things) system using a Wi-Fi connection so that monitoring activities are not separated by distance and time. The MAX86141 sensor is used in the design of this tool to detect the BPM and SpO2 values, after which the data is processed and displayed on the ESP32 TTGO T-Display. Monitoring results are also sent to the Blynk, and if the patient's condition is abnormal, an email notification is sent. According to the tool testing results, BPM has the smallest error of 0.94 percent and the largest error of 6.48 percent, whereas SpO2 has the smallest error of 0.20 percent and the largest error of 3.23 percent. The findings of this study can be used to improve the ease and efficiency of body health monitoring activities. This has the potential to significantly improve public health service quality, particularly during the COVID-19 pandemic


Download data is not yet available.


N. Bin Ahmed, S. Khan, N. A. Haque, and M. S. Hossain, “Pulse Rate and Blood Oxygen Monitor to Help Detect Covid-19: Implementation and Performance,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Apr. 2021, no. May, pp. 1–5. doi: 10.1109/IEMTRONICS52119.2021.9422520.

M. S. T. P. Sahrul, Triwiyanto, and Torib Hamzah, “Patient Monitor for SpO2 and Temperature Parameters,” J. Electron. Electromed. Eng. Med. Informatics, vol. 1, no. 2, pp. 7–12, Oct. 2019, doi: 10.35882/jeeemi.v1i2.2.

A. S. Utomo, E. H. P. Negoro, and M. Sofie, “MONITORING HEART RATE DAN SATURASI OKSIGEN MELALUI SMARTPHONE,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 1, pp. 319–324, Apr. 2019, doi: 10.24176/simet.v10i1.3024.

H. Ghandeharioun, “Automatic Home-based Screening of Obstructive Sleep Apnea using Single Channel Electrocardiogram and SPO2 Signals,” Int. J. Artif. Intell. Appl., vol. 12, no. 06, pp. 47–63, Nov. 2021, doi: 10.5121/ijaia.2021.12605.

A. B. Gopal et al., “Silent hypoxia in COVID-19: a gut microbiota connection,” Curr. Opin. Physiol., vol. 23, p. 100456, 2021, doi: 10.1016/j.cophys.2021.06.010.

P. Sirohiya et al., “A Correlation Analysis of Peripheral Oxygen Saturation and Arterial Oxygen Saturation Among COVID-19 Patients,” Cureus, vol. 10, no. April, pp. 5–12, Apr. 2022, doi: 10.7759/cureus.24005.

J. Baut, “Estimation of SpO2 at the Upper Arm,” vol. 10, no. December, pp. 5–12, 2020, doi: 10.13140/RG.2.2.25701.42726.

Siswanto et al., “Possible silent hypoxemia in a COVID-19 patient: A case report,” Ann. Med. Surg., vol. 60, no. November, pp. 583–586, 2020, doi: 10.1016/j.amsu.2020.11.053.

A. Madan, “Correlation between the levels of SpO2 and PaO2,” no. May 2017, pp. 10–12, 2021, doi: 10.4103/lungindia.lungindia.

N. K. Rauniyar, S. Pujari, and P. Shrestha, “Study of Oxygen Saturation by Pulse Oximetry and Arterial Blood Gas in ICU Patients : A Descriptive Cross-sectional Study,” no. October 2020, pp. 3–8, 2021, doi: 10.31729/jnma.5536.

A. Sarkar, V. Sinha, S. A. Mandlik, and J. Kathirvelan, “NON-INVASIVE BLOOD OXYGEN SATURATION MONITORING (SpO2) USING TRANSMITTANCE for PULSE OXIMETER,” Biomed. Eng. - Appl. Basis Commun., vol. 31, no. 6, pp. 1–9, 2019, doi: 10.4015/S1016237219500431.

A. John, K. K. Nundy, B. Cardiff, and D. John, “SomnNET: An SpO2 Based Deep Learning Network for Sleep Apnea Detection in Smartwatches,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Nov. 2021, no. November, pp. 1961–1964. doi: 10.1109/EMBC46164.2021.9631037.

I. B. Aguirregomezcorta, V. Blazek, and S. Leonhardt, “Learning about reflective PPG for SpO2 determination using Machine Learning,” vol. 7, no. 2, pp. 33–36, 2021, doi: 10.1515/cdbme-2021-2009 1.

E. M. J. Durlinger et al., “Hyperoxia: At what level of SpO2 is a patient safe? A study in mechanically ventilated ICU patients,” J. Crit. Care, vol. 39, pp. 199–204, 2017, doi: 10.1016/j.jcrc.2017.02.031.

A. Patekar and U. Kawalkar, “SpO2 Monitoring With the Home-Based COVID care Kit for Home Isolated COVID Patients,” no. November, pp. 18–20, 2021, doi: 10.1177/10105395211058290.

S. Z. Tachiyat, A. R. Imanda, and M. A. Tholib, “Design and build an IoT-based SpO2 Heart Rate Monitoring System and Body Temperature for COVID-19 Patients,” J. Pendidik. Fis. dan Keilmuan, vol. 6, no. 2, p. 120, 2020, doi: 10.25273/jpfk.v6i2.7952.

S. Sun, Y. Huang, and X. Yin, “Using admission SpO2 and ROX index predict outcome in patients with COVID-19,” Am. J. Emerg. Med., no. July, p. 160340, 2021, doi: 10.1016/j.ajem.2021.08.055.

M. F. A. Fikri, D. P. Kartikasari, and A. Bhawiyuga, “Implementation of Oxygen Saturation Sensor Data Acquisition Based on Bluetooth Low Energy Protocol,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, 2021, doi: 10.22219/kinetik.v6i3.1305.

M. Weenk, S. J. Bredie, M. Koeneman, G. Hesselink, H. Van Goor, and T. H. Van De Belt, “Continuous monitoring of vital signs in the general ward using wearable devices: Randomized controlled trial,” J. Med. Internet Res., vol. 22, no. 6, pp. 1–11, 2020, doi: 10.2196/15471.

M. A. Zaltum, M. S. Ahmad, A. Joret, and M. M. Abdul, “Design and Development of a portable Pulse Oximetry system,” Pulse, vol. 05, no. 03, pp. 37–44, 2010.

C. C.-19 D. T. A. G. Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MMG, Spijker R, Hooft L, Emperador D, Domen J, Horn SRA, Van den Bruel A, “care or hospital outpatient settings has COVID-19 ( Review ),” vol. 19, 2021, doi: 10.1002/

A. M. Chan, N. Ferdosi, and R. Narasimhan, “Ambulatory respiratory rate detection using ECG and a triaxial accelerometer,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 79, pp. 4058–4061, 2013, doi: 10.1109/EMBC.2013.6610436.

R. Sahandi, S. Noroozi, G. Roushan, V. Heaslip, and Y. Liu, “Wireless technology in the evolution of patient monitoring on general hospital wards,” J. Med. Eng. Technol., vol. 34, no. 1, pp. 51–63, 2010, doi: 10.3109/03091900903336902.

E. C. Geoff Appelboom1 et al., “Smart wearable body sensors for patient self-assessment and monitoring.,” Arch. Public Heal., vol. 72, no. 28, pp. 1–9, 2014.

S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitoring,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi: 10.3390/s17010130.

M. Cardona-Morrell, M. Prgomet, R. M. Turner, M. Nicholson, and K. Hillman, “Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta-analysis,” Int. J. Clin. Pract., vol. 70, no. 10, pp. 806–824, 2016, doi: 10.1111/ijcp.12846.

Y. Yuliza and H. Pangaribuan, “IoT-based digital stove design,” J. Teknol. Elektro, vol. 7, no. 3, pp. 187–192, 2016, doi: 10.22441/jte.v7i3.897.

A. Marina, H. K. Ilman, F. Febi, A. E. Muhammad, and I. Muhammad, “Studi Perbandingan Platform Internet of Things (IoT) untuk Smart Home Kontrol Lampu Menggunakan NodeMCU dengan Aplikasi Web Thingspeak dan Blynk,” J. Fidel., vol. 2, no. 1, pp. 59–78, 2020.

J. Xue et al., “Design of a wearable device for monitoring SpO2 continuously,” Proc. - 2015 IEEE 12th Int. Conf. Ubiquitous Intell. Comput. 2015 IEEE 12th Int. Conf. Adv. Trust. Comput. 2015 IEEE 15th Int. Conf. Scalable Comput. Commun. 20, pp. 1253–1257, 2016, doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.227.

S. B. Patil and A. M. Sattikar, “IoT Based SPO2 and Temperature Monitoring Using Arduino Mega and GSM,” vol. 10, no. March, pp. 5–12, 2022.

A. Al-Naji, G. A. Khalid, J. F. Mahdi, and J. Chahl, “Non-Contact SpO2 Prediction System Based on a Digital Camera,” Appl. Sci., vol. 11, no. 9, p. 4255, May 2021, doi: 10.3390/app11094255.

P. A. Filonanda, I. D. G. H. WISANA, and P. C. NUGRAHA, “Smart-band BPM and Temperature Based on Android Using Wi-Fi Communication,” J. Teknokes, vol. 14, no. 2, pp. 62–67, 2021, doi: 10.35882/teknokes.v14i2.3.

D. Ekiz, Y. S. Can, Y. C. Dardagan, and C. Ersoy, “Can a Smartband be Used for Continuous Implicit Authentication in Real Life,” IEEE Access, vol. 8, no. May, pp. 59402–59411, 2020, doi: 10.1109/ACCESS.2020.2982852.

F. A. Perdana, “Lithium Battery,” INKUIRI J. Pendidik. IPA, vol. 9, no. 2, p. 113, 2021, doi: 10.20961/inkuiri.v9i2.50082.

M. S. Alam, “An IoT Based Project on Patient Health Monitoring System,” vol. 10, no. May, pp. 5–12, 2022, doi: 10.13140/RG.2.2.19960.72967.

How to Cite
I. D. G. H. W. Wisana, P. Nugraha, F. Amrinsani, F. Sani, Y. Anwar, and S. Palanisamy, “Smartband for Heartbeat and Oxygen Saturation Monitoring with Critical Warning to Paramedic via IoT”, Jurnal Teknokes, vol. 15, no. 3, pp. 161-166, Sep. 2022.
Biomedical Engineering