Measuring Instruments For Oxygen Concentration, Flow, Temperature, and Humidity In CPAP Equipped With Microcontroller Based External Data Storage

  • Muhammad Ali Wafa Teknik Elektromedis
  • Moch. Prastawa Assalim Tetra Putra Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia
  • Levana Forra Wakidi Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia
  • Shubhrojit Misra Department of Electronics and Telecomunication Engineering, Jadavpur University, India
Keywords: Sleep Apnea, Humidifier CPAP, Temperature, Humidity, SHT30 Sensor

Abstract

The recommended approach for addressing sleep apnea in infants involves the utilization of CPAP therapy. A pivotal component of CPAP therapy is the inclusion of a humidifier, which serves to counteract potential hazards by introducing humidified air. The purpose of this study was centered on developing a compact, portable model to assess temperature and humidity parameters in CPAP humidifiers. The method utilized was the pre-experimental One Group Post Test Design. The contribution of this research lies in its ability to measure temperature and humidity in the CPAP humidifier using the SHT30 sensor. The sensor readings were processed using the Arduino Mega 2560 Pro Mini microcontroller. The measurement data was presented on a 20x4 LCD screen and had the capability to be stored using an SD Card, alongside the inclusion of a buzzer indicator on the tool. The results demonstrated that the highest error value for the temperature parameter was 1.8%, while the lowest was 0.49%. The expected conclusion is that these findings can be implemented effectively to assist operators in recording, measuring, and monitoring temperature and humidity in CPAP humidifiers and to facilitate monitoring of sleep apnea treatment procedures.

Downloads

Download data is not yet available.

References

B. Izci and N. J. Douglas, “Obstructive sleep apnea-hypopnea syndrome*,” Obstr. Sleep Apnea Causes, Treat. Heal. Implic., vol. 2, no. 1, pp. 129–182, 2012, doi: 10.4103/2141-9248.96943.

R. Golpe, A. Jimenéz, and R. Carpizo, “Home sleep studies in the assessment of sleep apnea/hypopnea syndrome,” Chest, vol. 122, no. 4, pp. 1156–1161, 2002, doi: 10.1378/chest.122.4.1156.

E. J. Olson, W. R. Moore, T. I. Morgenthaler, P. C. Gay, and B. A. Staats, “Obstructive Sleep Apnea-Hypopnea Syndrome,” Mayo Clin. Proc., vol. 78, no. 12, pp. 1545–1552, 2003, doi: 10.4065/78.12.1545.

N. McArdle, G. Devereux, H. Heidarnejad, H. M. Engleman, T. W. Mackay, and N. J. Douglas, “Long-term use of CPAP therapy for sleep apnea/hypopnea syndrome,” Am. J. Respir. Crit. Care Med., vol. 159, no. 4 I, pp. 1108–1114, 1999, doi: 10.1164/ajrccm.159.4.9807111.

A. Putra, Tri Bowo Indrato, and Liliek Soetjiatie, “The Design of Oxygen Concentration and Flowrate in CPAP,” J. Electron. Electromed. Eng. Med. Informatics, vol. 1, no. 1, pp. 6–10, 2019, doi: 10.35882/jeeemi.v1i1.2.

M. Jeeva Sankar, J. Sankar, R. Agarwal, V. K. Paul, and A. K. Deorari, “Protocol for administering continuous positive airway pressure in neonates,” Indian J. Pediatr., vol. 75, no. 5, pp. 471–478, 2008, doi: 10.1007/s12098-008-0074-x.

G. H. Wiest et al., “Initiation of CPAP therapy for OSA: Does prophylactic humidification during CPAP pressure titration improve initial patient acceptance and comfort?,” Respiration, vol. 69, no. 5, pp. 406–412, 2002, doi: 10.1159/000064016.

G. H. Wiest, J. Foerst, F. S. Fuchs, A. H. Schmelzer, E. G. Hahn, and J. H. Ficker, “In vivo efficacy of two heated humidifiers used during CPAP-therapy for obstructive sleep apnea under various environmental conditions,” Sleep, vol. 24, no. 4, pp. 435–440, 2001, doi: 10.1093/sleep/24.4.435.

R. Mathur and N. J. Douglas, “Family studies in patients with the sleep apnea-hypopnea syndrome,” Ann. Intern. Med., vol. 122, no. 3, pp. 174–178, 1995, doi: 10.7326/0003-4819-122-3-199502010-00003.

A. Qureshi and R. D. Ballard, “Current reviews of allergy and clinical immunology Obstructive sleep apnea,” J Allergy Clin Immunol, vol. 112, no. 4, pp. 643–651, 2003, doi: 10.1067/mai.2003.1813.

G. Nilius, U. Domanski, K. J. Franke, and K. H. Ruhle, “Impact of a controlled heated breathing tube humidifier on sleep quality during CPAP therapy in a cool sleeping environment,” Eur. Respir. J., vol. 31, no. 4, pp. 830–836, 2008, doi: 10.1183/09031936.00161806.

M. Duong, L. Jayaram, D. Camfferman, P. Catcheside, I. Mykytyn, and R. D. McEvoy, “Use of heated humidification during nasal CPAP titration in obstructive sleep apnoea syndrome,” Eur. Respir. J., vol. 26, no. 4, pp. 679–685, 2005, doi: 10.1183/09031936.05.00131504.

M. W. Ryan S, Doherty LS, Nolan GM, “Effects of Heated Humidification and Topical Steroids on Compliance , Nasal Using Nasal Continuous Positive Airway Pressure,” J. Clin. Sleep Med., vol. 5, no. 5, pp. 422–427, 2009.

T. E. Wiswell and P. Srinivasan, “Continuous Positive Airway Pressure,” Assist. Vent. Neonate, pp. 127–147, 2003, doi: 10.1016/B978-0-7216-9296-8.50013-1.

D. Chiumello et al., “Effect of a heated humidifier during continuous positive airway pressure delivered by a helmet,” Crit. Care, vol. 12, no. 2, pp. 1–8, 2008, doi: 10.1186/cc6875.

C. A. Massie, R. W. Hart, K. Peralez, and G. N. Richards, “Effects of humidification on nasal symptoms and compliance in sleep apnea patients using continuous positive airway pressure,” Chest, vol. 116, no. 2, pp. 403–408, 1999, doi: 10.1378/chest.116.2.403.

M. J. Mador, M. Krauza, A. Pervez, D. Pierce, and M. Braun, “Effect of heated humidification on compliance and quality of life in patients with sleep apnea using nasal continuous positive airway pressure,” Chest, vol. 128, no. 4, pp. 2151–2158, 2005, doi: 10.1378/chest.128.4.2151.

M. T. Martins de Araújo, S. Barros Vieira, E. Corral Vasquez, and B. Fleury, “Heated humidification or face mask to prevent upper airway dryness during continuous positive airway pressure therapy,” Chest, vol. 117, no. 1, pp. 142–147, 2000, doi: 10.1378/chest.117.1.142.

C. Soudorn, D. Muntham, S. Reutrakul, and N. Chirakalwasan, “Effect of heated humidification on CPAP therapy adherence in subjects with obstructive sleep apnea with nasopharyngeal symptoms,” Respir. Care, vol. 61, no. 9, pp. 1151–1159, 2016, doi: 10.4187/respcare.04536.

S. Hawkins, S. Huston, K. Campbell, and A. Halbower, “High-flow, heated, humidified air via nasal cannula treats CPAP-intolerant children with obstructive sleep apnea,” J. Clin. Sleep Med., vol. 13, no. 8, pp. 981–989, 2017, doi: 10.5664/jcsm.6700.

I. A. Abdulrazzak, H. Bierk, and L. A. Aday, “Humidity and Temperature Monitoring,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 5174–5177, 2018, doi: 10.14419/ijet.v7i4.23225.

T. H. Nasution, M. A. Muchtar, S. Seniman, and I. Siregar, “Monitoring temperature and humidity of server room using Lattepanda and ThingSpeak,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012068.

F. Hafeez, U. U. Sheikh, A. Khidrani, M. A. Bhayo, S. M. Abdallah Altbawi, and T. A. Jumani, “Distant temperature and humidity monitoring: Prediction and measurement,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp. 1405–1413, 2021, doi: 10.11591/ijeecs.v24.i3.pp1405-1413.

W. D. Hill, “Battery,” English J., vol. 69, no. 5, p. 55, 1980, doi: 10.2307/817656.

I. H. Sardar and S. Bhattacharyya, “A Short Review of Lithium-ion Battery Technology,” Int. J. Sci. Res. Sci. Eng. Technol., pp. 500–507, 2020, doi: 10.32628/ijsrset207295.

F. Kurniawan, Lasmadi, O. Dinaryanto, B. Sudibya, and M. R. E. Nasution, “A novel boost-buck converter architecture for improving transient response and output-voltage ripple,” J. ICT Res. Appl., vol. 14, no. 2, pp. 149–164, 2020, doi: 10.5614/itbj.ict.res.appl.2020.14.2.4.

S. H. Sasono, “Sensor Data Analysis On Monitoring And Control System Of Temperature And Humidity Based On Android In Soybean Seed Storage Room Using Nodemcu,” Jaict, vol. 3, no. 1, p. 8, 2019, doi: 10.32497/jaict.v3i1.1290.

S. Sarwito, I. R. Kusuma, and F. A. Cahyono, “Automatic Stacking Crane Prototype using Microcontroller Arduino Mega 2560,” Int. J. Mar. Eng. Innov. Res., vol. 1, no. 1, pp. 4–11, 2016, doi: 10.12962/j25481479.v1i1.1383.

J. Shaik, “Smart Trolley Shopping for Automatic Billing & Assistance for Visually Impaired,” J. Eng. Sci., vol. 14, no. 04, pp. 155–164, 2023.

D. S. M. Gulhane, “Voice based E-Notice Board using Android,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VII, pp. 338–343, 2021, doi: 10.22214/ijraset.2021.36106.

S. RezaKhan, A. Kabir, and D. Ara Hossain, “Designing Smart Multipurpose Digital Clock using Real Time Clock (RTC) and PIC Microcontroller,” Int. J. Comput. Appl., vol. 41, no. 9, pp. 39–42, 2012, doi: 10.5120/5573-7668.

K. Paul Kuria, O. Ochieng Robinson, and M. Mutava Gabriel, “Monitoring Temperature and Humidity using Arduino Nano and Module-DHT11 Sensor with Real Time DS3231 Data Logger and LCD Display,” Int. J. Eng. Res. Technol., vol. 9, no. 12, pp. 416–422, 2020, [Online]. Available: https://www.researchgate.net/publication/347950991.

* Konatham, N. Lakshmi, and P. Bala Nagu, “Area Optimized Design for Data Archival to SD Card,” Int. J. Eng. Trends Technol., vol. 6, no. 3, 2013, [Online]. Available: http://www.ijettjournal.org.

O. M. S. M. B. Satheesh, B. Senthilkumar, T. Veeramanikandasamy, “Microcontroller and SD Card Based Standalone Data Logging System using SPI and I2C Protocols for Industrial Application,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 5, no. 4, pp. 2208–2214, 2016, doi: 10.15662/IJAREEIE.2016.0504002.

Published
2023-11-21
How to Cite
[1]
M. Wafa, M. P. A. T. Putra, L. F. Wakidi, and S. Misra, “Measuring Instruments For Oxygen Concentration, Flow, Temperature, and Humidity In CPAP Equipped With Microcontroller Based External Data Storage”, Teknokes, vol. 16, no. 3, pp. 146-155, Nov. 2023.
Section
Biomedical Engineering