Monitoring SpO2, BPM, and Temperature on Smartband with Data Sending Using IoT Android Display

  • Melva Mahardika Department of Medical Electronic Technology, Poltekkes Kemenkes Surabaya
  • Bambang Guruh Irianto Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • I Dewa Gede Hari Wisana Department of Electromedical Engineering, Health Polytechnic Ministry of Health Surabaya, Surabaya, Indonesia
  • Triwiyanto Triwiyanto Department of Electromedical Engineering, Health Polytechnic Ministry of Health Surabaya, Surabaya, Indonesia
  • Yagnik Rathod Department of Computer Engineering, Government Engineering College, Dahod, India
Keywords: Smartband, MAX30100, MLX90614, BPM, Temperature


No matter if a patient is receiving care at home or in a hospital, monitoring them is an essential part of healthcare. Currently, many hospitals use a manual method to measure body temperature, oxygen saturation, and heart rate, necessitating physical visits from nurses to patients' rooms to get data. This approach, however, turns out to be less effective and time-consuming. This research aims to develop a wearable device placed on a patient's wrist is the main goal of this project. Body temperature, oxygen saturation, and heart rate are the three vital sign metrics that this gadget will be able to continuously monitor in real-time. Additionally, Ubidots integration will enable the device to deliver notifications based on the data gathered.The contribution of this research is the development of IoT-based wearable devices for remote monitoring, which aims to improve the quality of health service monitoring. The tool is expected to facilitate remote monitoring for medical personnel and patient families. This research method uses MAX30100 as digital sensors to monitor heart rate, oxygen saturation and MLX90614 as a sensor to detect body temperature. The results of this research can display data on the Ubidots application and send notifications to email. The results showed that the SpO2 sensor had the lowest error rate of 0.2% and the highest mistake rate of 1.6%. The error rates displayed by the BPM sensor varied, with the lowest being 0.6% and the largest being 5.68%. For body temperature measurements, the minimum error rate recorded is 0.002%, while the maximum error rate is 0.016%. This research shows that it is time to develop further into a sophisticated health monitoring tool to improve the quality of health services.


Download data is not yet available.


I. D. G. H. W. Wisana, P. C. Nugraha, F. Amrinsani, F. F. Sani, Y. I. Anwar, and S. Palanisamy, “Smartband for Heartbeat and Oxygen Saturation Monitoring with Critical Warning to Paramedic via IoT,” J. Teknokes, vol. 15, no. 3, pp. 161–166, 2022, doi: 10.35882/teknokes.v15i3.317.

P. A. Filonanda, D. Gede, H. Wisana, and P. C. Nugraha, “Smart-band BPM and Temperature Based on Android Using Wi-Fi Communication,” J. Teknokes Multidiscip. Rapid Rev. Open Access J., vol. 14, no. 2, pp. 62–67, 2021, doi: 10.35882/TEKNOKES.v1i1.3.

A. Hendryani, D. Gunawan, M. Rizkinia, R. N. Hidayati, and F. Y. Hermawan, “Real-time stress detection and monitoring system using IoT-based physiological signals,” Electr. Eng. Informatics, vol. 12, no. 5, pp. 2807–2815, 2023, doi: 10.11591/eei.v12i5.5132.

A. N. Ejin, H. T. Yew, M. Mamat, F. Wong, A. Chekima, and S. K. Chung, “Internet of things based real-time coronavirus 2019 disease patient health monitoring system,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, pp. 6806–6819, 2022, doi: 10.11591/ijece.v12i6.pp6806-6819.

M. Y. Nurhadiansyah, R. Widyatra Sudibyo, and M. Z. Samsono Hadi, “Body Temperature and Heart Rate Monitoring System Using Fuzzy Classification Method,” Int. J. Artif. Intell. Robot., vol. 4, no. 2, pp. 86–96, 2022, doi: 10.25139/ijair.v4i2.5290.

A. Sagahyroon, H. Raddy, A. Ghazy, and U. Suleman, “Design and implementation of a wearable healthcare monitoring system,” Int. J. Electron. Healthc., vol. 5, no. 1, pp. 68–86, 2009, doi: 10.1504/IJEH.2009.026273.

J. Karnadi, I. Roihan, A. Ekadiyanto, and R. A. Koestoera, “Development of a Low-cost Arduino-based Patient Monitoring System for Heartrate, Oxygen Saturation and Body Temperature Parameters,” J. Appl. Sci. Eng. Technol., vol. 1, no. 1, p. 26, 2022, doi: 10.47355/aset.v1i1.15.

C.-H. Huang and J.-W. Guo, “Design of Reflectance Pulse Oximeter and BPM using the Max30100 Sensor in Early Detection of Hypoxemia in Patients with Cardiovascular Disorders,” Int. J. Adv. Heal. Sci. Technol., vol. 1, no. 1, pp. 1–6, 2021, doi: 10.35882/ijahst.v1i1.1.

M. D. Stephenson, A. G. Thompson, J. J. Merrigan, J. D. Stone, and J. A. Hagen, “Applying Heart Rate Variability to Monitor Health and Performance in Tactical Personnel: A Narrative Review,” Int. J. Environ. Res. Public Health, vol. 18, no. 15, 2021, doi: 10.3390/ijerph18158143.

B. Annapurna, A. Manda, A. C. Raj, R. Indira, S. P. Kumari, and V. Nagalakshmi, “Max 30100/30102 Sensor Implementation to Viral Infection Detection Based On Spo2 and Heartbeat Pattern,” Ann. Rom. Soc. Cell Biol., vol. 25, no. 2, pp. 2053–2061, 2021, [Online]. Available:

J. H. Wibowo, H. G. Ariswati, I. D. Gede, H. Wisana, and S. Misra, “Analysis of Heart Rate and Body Temperature Data Retrieval in Smartband Design with Android Applications Using the Multiplexing Method,” J. Teknokes, vol. 16, no. 1, pp. 7–13, 2023.

A. Zaky, P. C. Nugraha, and A. Pudji, “Bed Measuring Estimate Blood Volume and Cardiac Output With TFT Display Equipped With Data Storage ( SpO 2 and BPM ),” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 2, no. 1, pp. 6–12, 2020, doi: 10.35882/ijeeemi.v2i1.2.

Y. Devis, Y. Irawan, Junadhi, F. Zoromi, Herianto, and M. R. Amartha, “Monitoring System of Heart Rate, Temperature and Infusion in Patients Based on Microcontroller (Arduino Uno),” J. Phys. Conf. Ser., vol. 1845, no. 1, 2021, doi: 10.1088/1742-6596/1845/1/012069.

K. T. Douglas, T. T. James, and K. H. Jennifer, “Implementation of Heart-Rate and Pulse Oximetry Monitoring Device With Wireless Temperature Sensor,” Int. J. Acad. Eng. Res. Theory (IJAERT, vol. 1, no. 1, pp. 1–7, 2021, [Online]. Available: http://perfectengineeringassociates.comhttp//

M. A. Mohd Takiyuddin, I. H. Abd Halim, T. R. Razak, and M. F. Mohd Fuzi, “Remote Patient Monitoring System For Covid-19 Patient Using Wi-Fi-Based Pulse Oximeter Reading Sensor,” J. Comput. Res. Innov., vol. 7, no. 2, pp. 101–110, 2022, doi: 10.24191/jcrinn.v7i2.290.

A. Abu Bakar, S. S. A. Rahim, A. R. Razali, E. Noorsal, R. Radzali, and A. F. Abd Rahim, “Wearable Heart Rate and Body Temperature Monitoring Device for Healthcare,” J. Phys. Conf. Ser., vol. 1535, no. 1, 2020, doi: 10.1088/1742-6596/1535/1/012002.

S. Syaifudin, T. Triwiyanto, D. A. Harditamara, and F. Masood, “Pulse Oximeter Design for SpO2 and BPM Recording on External Memory to Support the Covid-19 Diagnosis,” J. Teknokes, vol. 15, no. 3, pp. 147–153, 2022, doi: 10.35882/teknokes.v15i3.303.

A. A. Pathare, D. B. Kshirsagar, S. G. Wadekar, and M. N. S. Deshmukh, “SMART I ROBOT FOR HEALTHCARE SYSTEM BY USING SW FRAMEWORK AND IOT,” Int. J. Res. Appl. Sci. Eng. Technol., no. 05, pp. 2862–2867, 2023.

N. Venu and S. R. Allanki, “INTERNET OF THINGS BASED PULSE OXIMETER FOR HEALTH MONITORING INTERNET OF THINGS BASED PULSE OXIMETER FOR HEALTH,” Int. J. Acad. Eng. Res. Theory (IJAERT, no. October, 2022, doi: 10.14704/NQ.2022.20.5.NQ22781.

I. K. Hanoon and M. I. Aal-Nouman, “Cloud-based COVID-19 Patient Monitoring using Arduino,” 3rd 2021 East Indones. Conf. Comput. Inf. Technol. EIConCIT 2021, pp. 292–296, 2021, doi: 10.1109/EIConCIT50028.2021.9431881.

P. Jahnavi, B. S. Krishna, K. L. Shanmuk, and Y. Chakrapani, “COVID-19 VENTILATOR AND HEALTH MONITORING DEVICE,” Int. J. Res. Appl. Sci. Eng. Technol., no. 06, pp. 5464–5468, 2022.

R.Yoganapriya, P.Deepthi, and M.Dhinakaran, “IoT Based Covid Patient Health Monitoring System,” Int. J. Eng. Technol. Manag. Sci., vol. 7, no. 1, pp. 82–87, 2023, doi: 10.46647/ijetms.2023.v07i01.015.

B. Lucas, A. Mahamuni, V. Kulal, A. Gupta, and K. Deorukhkar, “Affordable Real-Time Heart Rate, ECG & SpO2 Monitoring System Using Internet of Things (IoT),” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 11, pp. 1852–1858, 2022, doi: 10.22214/ijraset.2022.47731.

D. B. Ellebrecht, D. Gola, and M. Kaschwich, “Evaluation of a Wearable in-Ear Sensor for Temperature and Heart Rate Monitoring: A Pilot Study,” J. Med. Syst., vol. 46, no. 12, 2022, doi: 10.1007/s10916-022-01872-6.

A. N. Costrada, A. G. Arifah, I. D. Putri, I. K. A. Sara Sawita, H. Harmadi, and M. Djamal, “Design of Heart Rate, Oxygen Saturation, and Temperature Monitoring System for Covid-19 Patient Based on Internet of Things (IoT),” J. Ilmu Fis. | Univ. Andalas, vol. 14, no. 1, pp. 54–63, 2022, doi: 10.25077/jif.14.1.54-63.2022.

How to Cite
M. Mahardika, B. G. Irianto, I. D. G. H. Wisana, T. Triwiyanto, and Y. Rathod, “Monitoring SpO2, BPM, and Temperature on Smartband with Data Sending Using IoT Android Display”, Teknokes, vol. 16, no. 4, pp. 185–192, Nov. 2023.
Biomedical Engineering

Most read articles by the same author(s)