Digital Sphygmomanometer Detects Systole Diastolic Display

  • Farahun Nisa Aulia Department of Medical Electronic Technology, Poltekkes Kemenkes Surabaya
  • Andjar Pudji Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • Sumber Sumber Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • Naqeeb Ullah Balochistan University of Information Technology Engineering and Management Sciences: Quetta, Balochistan, Pakistan
Keywords: Blood Pressure. Body Temperature. Hypertension. MPX5050GP. MLX90614. Arduino Uno


Hypertension. characterized by elevated blood pressure against artery walls. can be influenced by a patient's body temperature. Therefore. detecting body temperature before measuring blood pressure is essential for accurate assessment. Currently. Digital Tension and Body Temperature parameters are typically evaluated separately. To address this. we propose a novel approach to combine these parameters into a single unit. enhancing health monitoring. Utilizing MPX5050GP for blood pressure and MLX90614 for body temperature detection. Both sensors are directly connected to the Arduino UNO microcontroller. enabling seamless data processing and display on the Nextion LCD. Experimental results demonstrate the device's effectiveness. with systolic blood pressure measurements showing a Maximum error: 2.23%. minimum error: 0.53% for systolic measurements. Diastolic measurements have with a remarkable maximum error of only 4.69% and a minimal error of 1.79%. Additionally. the body temperature measurements exhibited a Achieved exceptional precision with errors as low as 0.45% and a maximum of 1.65%. Successfully completed. this design facilitates simultaneous measurement of two vital parameters. Its potential to streamline health monitoring could significantly impact hypertension management and other related conditions. Further validation and implementation in clinical settings are anticipated to enhance its utility and benefits.


Download data is not yet available.


P. J. Colquitt, “Will the millimetre of mercury be replaced by the kilopascal? [2],” J. Hypertens., vol. 17, no. 2, pp. 305–306, 1999, doi: 10.1097/00004872-199917020-00017.

C. A’Court, R. Stevens, S. Sanders, A. Ward, R. McManus, and C. Heneghan, “Type and accuracy of sphygmomanometers in primary care: A cross-sectional observational study,” Br. J. Gen. Pract., vol. 61, no. 590, pp. 598–603, 2011, doi: 10.3399/bjgp11X593884.

G. I. Varughese and G. Y. H. Lip, “Goodbye Mercury? Blood Pressure Measurement and Its Future,” J. R. Soc. Med., vol. 98, no. 3, pp. 89–90, 2005, doi: 10.1177/014107680509800301.

S. N. Mahmood and E. Ercelecbi, “Development of Blood Pressure Monitor by Using Capacitive Pressure Sensor and Microcontroller,” Int. Iraqi Conf. Eng. Technol. its Appl. IICETA 2018, pp. 96–100, 2018, doi: 10.1109/IICETA.2018.8458099.

T. Panula, J. P. Sirkia, D. Wong, and M. Kaisti, “Advances in Non-Invasive Blood Pressure Measurement Techniques,” IEEE Rev. Biomed. Eng., vol. 16, pp. 424–438, 2023, doi: 10.1109/RBME.2022.3141877.

Y. Wan et al., “Determining which automatic digital blood pressure device performs adequately: A systematic review,” J. Hum. Hypertens., vol. 24, no. 7, pp. 431–438, 2010, doi: 10.1038/jhh.2010.37.

K. A. Johnson, D. J. Partsch, P. Gleason, and K. Makay, “Comparison of two home blood pressure monitors with a mercury sphygmomanometer in an ambulatory population,” Pharmacotherapy, vol. 19, no. 3, pp. 333–339, 1999, doi: 10.1592/phco.19.4.333.30936.

R. Mukherjee, S. Ghosh, B. Gupta, and T. Chakravarty, “A Literature Review on Current and Proposed Technologies of Noninvasive Blood Pressure Measurement,” Telemed. e-Health, vol. 24, no. 3, pp. 185–193, 2018, doi: 10.1089/tmj.2017.0068.

K. Tan, M. H. F. Rahiman, R. A. Rahim, M. Jaysuman, and S. Buyamin, “Online micro-controller non-invasive blood pressure monitoring system (E-BPM),” J. Teknol. (Sciences Eng., vol. 54, pp. 403–423, 2011, doi: 10.11113/jt.v54.824.

M. G. Myers, M. R. Nelson, and G. A. Head, “Automated office blood pressure measurement for routine clinical practice,” Med. J. Aust., vol. 197, no. 7, pp. 372–373, 2012, doi: 10.5694/mja11.11545.

A. J. Puspitasari, E. Endarko, and I. Fatimah, “Blood Pressure Monitor Design Using MPX5050GP Pressure Sensor and Visual C# 2010 Express,” J. Fis. dan Apl., vol. 15, no. 3, p. 99, 2019, doi: 10.12962/j24604682.v15i3.4929.

J. Wiesel, D. Wiesel, R. Suri, and F. C. Messineo, “The use of a modified sphygmomanometer to detect atrial fibrillation in outpatients,” PACE - Pacing Clin. Electrophysiol., vol. 27, no. 5, pp. 639–643, 2004, doi: 10.1111/j.1540-8159.2004.00499.x.

M. G. Myers, “Why automated office blood pressure should now replace the mercury sphygmomanometer,” J. Clin. Hypertens., vol. 12, no. 7, pp. 478–480, 2010, doi: 10.1111/j.1751-7176.2010.00301.x.

T. Valler-jones and K. Wedgbury, “Measuring blood pressure using the mercury sphygmomanometer,” vol. 14, no. 3, pp. 145–150, 2005.

O. E. J., I. O. O., O. O. O., and O. O., “Development of a real time blood pressure, temperature measurement and reporting system for inpatients,” Int. J. Phys. Sci., vol. 11, no. 17, pp. 225–232, 2016, doi: 10.5897/ijps2016.4514.

D. V. Reddy and Y. Sreenivasulu, “Body Temperature & Blood Pressure Remote Monitoring,” IJMTST | Int. J. Mod. Trends Sci. Technol., vol. 1, no. 1, 2015.

I. Jahan, M. L. Rahman, A. W. Reza, and S. Das Barman, “Systolic blood pressure measurement from heart rate using IoT,” Int. J. Recent Technol. Eng., vol. 7, no. 4, pp. 135–138, 2018.

K. Wedgbury and T. Valler-Jones, “Measuring blood pressure using an automated sphygmomanometer.,” Br. J. Nurs., vol. 17, no. 11, pp. 714–718, 2008, doi: 10.12968/bjon.2008.17.11.29642.

N. M. Van Popele et al., “Arterial stiffness as underlying mechanism of disagreement between an oscillometric blood pressure monitor and a sphygmomanometer,” Hypertension, vol. 36, no. 4, pp. 484–488, 2000, doi: 10.1161/01.HYP.36.4.484.

E. O’Brien, “Consequences of banning mercury and the cuff controversy,” Blood Press. Monit., vol. 5, no. 1, pp. 33–34, 2000, doi: 10.1097/00126097-200002000-00007.

Alamsyah, M. Subito, S. Dewi, and A. Amir, “Heartbeat and Blood Pressure Monitoring System Wireless-Based,” Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 503–506, 2019, doi: 10.1109/ISEMANTIC.2019.8884316.

C. Kaegi, M. C. Thibault, F. Giroux, and D. Bourbonnais, “The interrater reliability of force measurements using a modified sphygmomanometer in elderly subjects,” Phys. Ther., vol. 78, no. 10, pp. 1095–1103, 1998, doi: 10.1093/ptj/78.10.1095.

Mr. Mahavir K. Beldar1, “Design and Development of Arm Manikin for Blood Pressure and nPulse Simulation,” Ijmer, vol. 4, no. 5, pp. 37–49, 2014, [Online]. Available:

R. J. McManus, J. Mant, M. R. P. Hull, and F. D. R. Hobbs, “Does changing from mercury to electronic blood pressure measurement influence recorded blood pressure? An observational study,” Br. J. Gen. Pract., vol. 53, no. 497, pp. 953–956, 2003.

C. A. Martin, J. D. Cameron, S. S. Chen, and B. P. McGrath, “Measurement of blood pressure in the office,” Hypertension, vol. 56, no. 1, pp. 420–442, 2010, doi: 10.1161/HYPERTENSIONAHA.110.154625.

How to Cite
F. Nisa Aulia, A. Pudji, S. Sumber, and N. Ullah, “Digital Sphygmomanometer Detects Systole Diastolic Display”, Teknokes, vol. 16, no. 4, pp. 224-231, Nov. 2023.
Biomedical Engineering