Fuzzy Logic Temperature Control on Baby Incubator Transport Battery Efficiency

  • Yohanes Cristomus Co'o Departement of Medical Electronic Technology, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • I.D.G. Hari Wisana Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0003-3497-2230
  • Abd Kholiq Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-3311-7016
Keywords: Baby Incubator Transport, Battery, Fuzzy Logic


Baby incubator transport is a life support tool used to maintain the body temperature of newborn babies during transportation from one place to another, such as from a hospital to an intensive care center with more complete facilities. The problem that often occurs in transport incubators is limitations in the power system. Baby incubator transport uses a battery as the main power source. However, the limited battery power can cause risks to the baby if there is a problem with the power system or the battery runs out. This study aims to monitor the remaining battery voltage in a transport baby incubator that uses fuzzy logic to control the temperature inside and will compare with the performance of PID control. This research uses a fuzzy logic method to control temperature and maximize battery power. In this study, researchers only looked at the efficiency of the fuzzy logic method in temperature control and the battery that will be used. The research uses a display that will display the battery voltage and current values, battery power percentage, skin temperature, chamber temperature, humidity and the selected temperature control. The module that has been made is then compared with the Digital Multimeter measuring instrument. From the results of data collection, the measurement of the remaining battery voltage between the sensor reading and the measuring instrument has a difference where at a temperature of 34 ºC it is 2.1%, at a temperature of 35 ºC it is 2% and at a temperature of 36 ºC it is 3.9%. When compared to research using PID control, fuzzy logic takes longer to reach the desired temperature and demands more battery power when compared to PID control.


Download data is not yet available.


J. Smith, “Thermoregulation and temperature taking in the developing world: A brief encounter,” J. Neonatal Nurs., vol. 20, no. 5, pp. 218–229, 2014, doi: 10.1016/j.jnn.2014.03.002.

WHO Document Production Services, “WHO compendium of innovative health technologies for low-resource settings,” p. 84, 2016.

M. Manani, P. Jegatheesan, G. DeSandre, D. Song, L. Showalter, and B. Govindaswami, “Elimination of admission hypothermia in preterm very low-birth-weight infants by standardization of delivery room management.,” Perm. J., vol. 17, no. 3, pp. 8–13, 2013, doi: 10.7812/TPP/12-130.

E. M. Mccall, F. Alderdice, H. L. Halliday, S. Vohra, and L. Johnston, “Interventions to prevent hypothermia at birth in preterm and/or low birth weight infants,” Cochrane Database Syst. Rev., vol. 2018, no. 2, 2018, doi: 10.1002/14651858.CD004210.pub5.

R. Delacrétaz, C. J. F. Fumeaux, C. Stadelmann, A. Rodriguez Trejo, A. Destaillats, and E. Giannoni, “Intra-hospital transport of newborn infants dataset,” Data Br., vol. 39, 2021, doi: 10.1016/j.dib.2021.107510.

M. Ali, M. Abdelwahab, and S. Awadekreim, “Fuzzy Logic Control in Air Temperature and Skin Temperature in the Infant Incubator,” Int. J. Comput. Sci. Manag. Stud., vol. 23, no. 1, pp. 10–13, 2016, [Online]. Available: http://www.ijcsms.com/abstractdetails.aspx?abs=880

I. Adam, H. F. Rozi, S. Khan, Z. Zaharuddin, K. A. Kadir, and A. N. Nurdin, “The development of the fuzzy-based infant incubator,” AIP Conf. Proc., vol. 2129, no. July, 2019, doi: 10.1063/1.5118109.

Y. A. K. Utama, “Design of PID Disturbance Observer with Neuro Fuzzy Inverse Model for Precise Temperature Control in Infant Incubator,” in Proceeding - 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering, ICITAMEE 2020, Oct. 2020, pp. 179–184. doi: 10.1109/ICITAMEE50454.2020.9398509.

S. B. Utomo, J. F. Irawan, A. Mujibtamala, M. I. Nari, and R. Amalia, “Automatic baby incubator system with fuzzy-PID controller,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012023, 2021, doi: 10.1088/1757-899x/1034/1/012023.

M. Munadi, R. A. Pandu, R. Wiradinata, H. P. Julianti, and R. Setiawan, “Model and prototype of mobile incubator using PID controller based on Arduino Uno,” J. Teknol. dan Sist. Komput., vol. 8, no. 1, pp. 69–77, 2020, doi: 10.14710/jtsiskom.8.1.2020.69-77.

M. Shaib, M. Rashid, L. Hamawy, M. Arnout, I. El Majzoub, and A. J. Zaylaa, “Advanced portable preterm baby incubator,” Int. Conf. Adv. Biomed. Eng. ICABME, vol. 2017-Octob, pp. 1–4, 2017, doi: 10.1109/ICABME.2017.8167522.

R. Rakhmawati, Irianto, F. D. Murdianto, A. Luthfi, and A. Y. Rahman, “Thermal optimization on incubator using fuzzy inference system based IoT,” Proceeding - 2019 Int. Conf. Artif. Intell. Inf. Technol. ICAIIT 2019, pp. 464–468, 2019, doi: 10.1109/ICAIIT.2019.8834530.

J. Carter, F. Chiclana, A. S. Khuman, and T. Chen, Fuzzy Logic. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-66474-9.

W. Robson, I. Ernawati, and C. Nugrahaeni, “Design of Multisensor Automatic Fan Control System Using Sugeno Fuzzy Method,” J. Robot. Control, vol. 2, no. 4, pp. 302–306, 2021, doi: 10.18196/jrc.2496.

S. Kambalimath and P. C. Deka, “A basic review of fuzzy logic applications in hydrology and water resources,” Appl. Water Sci., vol. 10, no. 8, p. 191, Aug. 2020, doi: 10.1007/s13201-020-01276-2.

M. S. Abood, I. K. Thajeel, E. M. Alsaedi, M. M. Hamdi, A. S. Mustafa, and S. A. Rashid, “Fuzzy Logic Controller to control the position of a mobile robot that follows a track on the floor,” in 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct. 2020, pp. 1–7. doi: 10.1109/ISMSIT50672.2020.9254417.

M. Rezeki and N. Putra, “Application of the Fuzzy Sugeno Method in a Decision Support System for Teacher Performance Assessment,” Knowbase Int. J. Knowl. Database, vol. 1, no. 2, p. 129, Dec. 2021, doi: 10.30983/ijokid.v1i2.5043.

S. Budiyanto, L. Medriavin Silalahi, F. Artadima Silaban, U. Darusalam, S. Andryana, and I. M. Fajar Rahayu, “Optimization Of Sugeno Fuzzy Logic Based On Wireless Sensor Network In Forest Fire Monitoring System,” in 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), Oct. 2020, pp. 126–134. doi: 10.1109/ICIEE49813.2020.9277365.

A. V. Vitianingsih, Ravino Rahman, Anastasia Lidya Maukar, Litafira Syahadiyanti, and Seftin Fitri Ana Wati, “Decision Support System to Determine The Price of Used Computer Based On Specification and Usage Duration Using Fuzzy Logic,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 1, pp. 78–86, Mar. 2023, doi: 10.23887/janapati.v12i1.51547.

A. Kviesis, V. Komasilovs, O. Komasilova, and A. Zacepins, “Application of fuzzy logic for honey bee colony state detection based on temperature data,” Biosyst. Eng., vol. 193, pp. 90–100, May 2020, doi: 10.1016/j.biosystemseng.2020.02.010.

Q. Hidayati, N. Yanti, N. Jamal, and M. Adisaputra, “Portable Baby Incubator Based On Fuzzy Logic,” J. Telemat. Informatics, vol. 8, no. 1, pp. 47–57, 2020, doi: http://doi.org/10.12928/jti.v8i1.

R. Y. Kartikasari, “Optimization of Traffic Light Control Using Fuzzy Logic Sugeno Method,” Int. J. Glob. Oper. Res., vol. 1, no. 2, pp. 51–61, Feb. 2020, doi: 10.47194/ijgor.v1i2.37.

S. Kambalimath and P. C. Deka, “A basic review of fuzzy logic applications in hydrology and water resources,” Appl. Water Sci., vol. 10, no. 8, 2020, doi: 10.1007/s13201-020-01276-2.

K. Supriyadi, U. Islam, and S. Agung, “Fuzzy Logic Based Incubator Temp And Humid Level Controller Prototype,” J. Telemat. Informatics, vol. 7, no. 3, pp. 133–144, 2019, doi: https://dx.doi.org/10.12928/jti.v7i3.

A. M. Yunita, N. N. Wardah, A. Sugiarto, E. Susanti, L. Sujai, and R. Rizky, “Water level measurements at the cikupa pandeglang bantendam using fuzzy sugenowith microcontroler-based ultrasonik sensor,” J. Phys. Conf. Ser., vol. 1477, no. 5, p. 052048, Mar. 2020, doi: 10.1088/1742-6596/1477/5/052048.

R. W. Pratiwi, R. F. Sari, and R. Widyasari, “Implementation of Sugeno’S Fuzzy Logic in Analyzing Rice Availability During the Covid-19 Pandemic At Perum Bulog North Sumatra,” J. Math. …, vol. 2, no. 2, pp. 83–94, 2021, [Online]. Available: http://pcijournal.org/index.php/jmscowa/article/view/54%0Ahttps://pcijournal.org/index.php/jmscowa/article/download/54/44

Y. Ardi, S. Effendi, and E. B. Nababan, “Mamdani and Sugeno Fuzzy Performance Analysis on Rainfall Prediction,” Randwick Int. Soc. Sci. J., vol. 2, no. 2, pp. 176–192, Apr. 2021, doi: 10.47175/rissj.v2i2.240.

A. R. Al Tahtawi, S. Yahya, B. Setiadi, and C. Marsya, “The Implementation of Embedded Fuzzy Logic Controller on Liquid Level Control System,” in Proceedings of the International Seminar of Science and Applied Technology (ISSAT 2020), 2020, vol. 198, no. Issat, pp. 161–166. doi: 10.2991/aer.k.201221.028.

Y. Z. Maulana, Firdaus Fathurrohman, and Gunawan Wibisono, “Egg Incubator Temperature and Humidity Control Using Fuzzy Logic Controller,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 2, pp. 318–325, Mar. 2023, doi: 10.29207/resti.v7i2.4728.

W. Widhiada, T. G. T. Nindhia, I. Gantara, I. Budarsa, and I. Suarndwipa, “Temperature Stability and Humidity on Infant Incubator Based on Fuzzy Logic Control,” in Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence, Apr. 2019, pp. 155–159. doi: 10.1145/3330482.3330527.

S. P, S. D.N, and P. B, “Temperature Control using Fuzzy Logic,” Int. J. Instrum. Control Syst., vol. 4, no. 1, pp. 1–10, 2014, doi: 10.5121/ijics.2014.4101.

A. Majid, Endang Dian Setioningsih, A. Kholiq, S. Y. Setiawan, and A. Suthar, “Comparative Analysis of PID and Fuzzy Temperature Control System on Infant Warmer,” J. Electron. Electromed. Eng. Med. Informatics, vol. 4, no. 4, 2022, doi: 10.35882/jeeemi.v4i4.257.

B. G. Irianto, A. M. Maghfiroh, M. Sofie, A. Kholiq, S. D. Musvika, and D. A. Akbar, “Controlling the Temperature of PID System-Based Baby Incubator to Reduction Overshoot,” Lect. Notes Electr. Eng., vol. 1008, pp. 529–541, 2023, doi: 10.1007/978-981-99-0248-4_35.

How to Cite
Y. C. Co’o, I. H. Wisana, and A. Kholiq, “Fuzzy Logic Temperature Control on Baby Incubator Transport Battery Efficiency”, Teknokes, vol. 17, no. 1, pp. 29–36, Mar. 2024.
Biomedical Engineering

Most read articles by the same author(s)