Design of Ambulatory Blood Pressure Monitoring for IOT-Based Hypertension Patients

  • Alvy Noorlatifa Sari poltekkes kemenkes surabaya
  • Priyambada C. N. Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-0198-8458
  • Muhammad Ridha Mak’ruf Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-5095-0253
  • Her Gumiwang Ariswati Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-8267-5057
  • Moch. Prastawa Assalim T.P. T.P. Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0001-5160-2181
  • Anita Miftahul Maghfiroh Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-2570-7374
Keywords: ABPM, Hypertension, Blood Pressure, IoT, MPX5050

Abstract

Ambulatory blood pressure monitoring or ABPM is a non-invasive method to determine the average blood pressure for at least 24 hours, not only when medical checkup. ABPM is often found in cardiac examinations and monitoring of catlab preoperative patients. This study aims to analyze the performance of the ABPM tool that can measure blood pressure continuously with a specified time interval connected to IoT so that can make it easier to get test results. The contribution of this research is a 24-hour monitoring system with delivery via IoT. The experiment was conducted 10 times with Prosim comparison at each point to assess the level of reading accuracy and effectiveness of IoT viewers. At 120/80 mmHg systole accuracy 98.42%, diastole 97.25%. While at 150/100 mmHg systole accuracy is 99.67%, Diastole is 98.1%. At 200/160 mmHg point Systole accuracy 98.35%, Diastole 98.25%. The SPSS test states that the reading data collection is acceptable and has an average commensurate with the test. The difference in viewer time on the TFT and IoT layers is 3.8 seconds and the test data value is 0% loss. The results from making this module, concluding by utilizing the sensor MPX5050 obtained sufficient accuracy, the use of ESP32 as a microcontroller processes the sensor readings which will be converted into systole-diastole values and displays on IoT so that it can slightly help analyze the patient's condition, and this module can read the simulator tool well at pressures of 120/80 mmHg, 150/100 mmHg, and 200/160 mmHg. The device showed good accuracy and reliability in measuring blood pressure at different levels compared to a vital signs simulator. The device can be used for 24-hour monitoring of hypertension patients and provide useful information for diagnosis and treatment.

Downloads

Download data is not yet available.

References

Y. Turana et al., “May Measurement Month 2018: an analysis of blood pressure screening results from Indonesia.,” Eur. Hear. J. Suppl. J. Eur. Soc. Cardiol., vol. 22, no. Suppl H, pp. H66–H69, Aug. 2020, doi: 10.1093/eurheartj/suaa031.

A. K. Kiani, Z. Naureen, D. Pheby, G. Henehan, and R. Brown, “Methodology for clinical research,” vol. 63, 2022, doi: 10.15167/2421-4248/jpmh2022.63.2S3.2769.

H. Arifin et al., “Analysis of Modifiable, Non-Modifiable, and Physiological Risk Factors of Non-Communicable Diseases in Indonesia: Evidence from the 2018 Indonesian Basic Health Research.,” J. Multidiscip. Healthc., vol. 15, pp. 2203–2221, 2022, doi: 10.2147/JMDH.S382191.

P. Risk, “Corrigendum: Analysis of Modifiable, Non-Modifiable, and Physiological Risk Factors of Non-Communicable Diseases in Indonesia: Evidence from the 2018 Indonesian Basic Health Research (J Multidiscip Healthc. 2022;15:2203–2221),” J. Multidiscip. Healthc., vol. 15, p. 2419, 2022, doi: 10.2147/JMDH.S393923.

“Erratum: Analysis of Modifiable, Non-Modifiable, and Physiological Risk Factors of Non-Communicable Diseases in Indonesia: Evidence from the 2018 Indonesian Basic Health Research [Corrigendum].,” Journal of multidisciplinary healthcare, vol. 15. New Zealand, pp. 2419–2420, 2022. doi: 10.2147/JMDH.S393923.

H. Arifin et al., “Analysis of Modifiable, Non-Modifiable, and Physiological Risk Factors of Non-Communicable Diseases in Indonesia: Evidence from the 2018 Indonesian Basic Health Research,” J. Multidiscip. Healthc., vol. 15, no. October, pp. 2203–2221, 2022, doi: 10.2147/JMDH.S382191.

K. Kario et al., “Guidance on ambulatory blood pressure monitoring: A statement from the HOPE Asia Network.,” J. Clin. Hypertens. (Greenwich)., vol. 23, no. 3, pp. 411–421, Mar. 2021, doi: 10.1111/jch.14128.

P. E. Drawz, M. Abdalla, and M. Rahman, “Blood pressure measurement: clinic, home, ambulatory, and beyond.,” Am. J. kidney Dis. Off. J. Natl. Kidney Found., vol. 60, no. 3, pp. 449–462, Sep. 2012, doi: 10.1053/j.ajkd.2012.01.026.

K. Kario et al., “Expert panel consensus recommendations for ambulatory blood pressure monitoring in Asia: The HOPE Asia Network.,” J. Clin. Hypertens. (Greenwich)., vol. 21, no. 9, pp. 1250–1283, Sep. 2019, doi: 10.1111/jch.13652.

M. G. Myers, M. Godwin, M. Dawes, A. Kiss, S. W. Tobe, and J. Kaczorowski, “Measurement of blood pressure in the office: recognizing the problem and proposing the solution.,” Hypertens. (Dallas, Tex. 1979), vol. 55, no. 2, pp. 195–200, Feb. 2010, doi: 10.1161/HYPERTENSIONAHA.109.141879.

K. Asayama, T. Ohkubo, and Y. Imai, “In-office and out-of-office blood pressure measurement,” J. Hum. Hypertens., 2021, doi: 10.1038/s41371-021-00486-8.

D. Shimbo, M. Abdalla, L. Falzon, R. R. Townsend, and P. Muntner, “Role of Ambulatory and Home Blood Pressure Monitoring in Clinical Practice: A Narrative Review.,” Ann. Intern. Med., vol. 163, no. 9, pp. 691–700, Nov. 2015, doi: 10.7326/M15-1270.

A. Chaudhuri et al., “Role of Twenty-Four-Hour Ambulatory Blood Pressure Monitoring in Children on Dialysis,” Clin. J. Am. Soc. Nephrol., vol. 6, no. 4, 2011, [Online]. Available: https://journals.lww.com/cjasn/fulltext/2011/04000/role_of_twenty_four_hour_ambulatory_blood_pressure.26.aspx

C. Pena-Hernandez, K. Nugent, and M. Tuncel, “Twenty-Four-Hour Ambulatory Blood Pressure Monitoring.,” J. Prim. Care Community Health, vol. 11, p. 2150132720940519, 2020, doi: 10.1177/2150132720940519.

J. R. Turner, A. J. Viera, and D. Shimbo, “Ambulatory blood pressure monitoring in clinical practice: a review.,” Am. J. Med., vol. 128, no. 1, pp. 14–20, Jan. 2015, doi: 10.1016/j.amjmed.2014.07.021.

G. M. M. Faith Mueni Musyoka, Moses Mwangi Thiga, “A 24-hour ambulatory blood pressure monitoring system for preeclampsia management in antenatal care,” Informatics Med. Unlocked, vol. 16, 2019, doi: https://doi.org/10.1016/j.imu.2019.100199.

M. L.J. et al., “Mobile personal health system for ambulatory blood pressure monitoring,” Comput. Math. Methods Med., vol. 2013, p. no pagination, 2013, [Online]. Available: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&NEWS=N&AN=2013357990

J. Chia, K. S. Bhatia, A. S. Mihailidou, and L. B. Kanagaratnam, “The Role of Ambulatory Blood Pressure Monitoring in Current Clinical Practice,” Hear. Lung Circ., vol. 31, no. 10, pp. 1333–1340, 2022, doi: https://doi.org/10.1016/j.hlc.2022.06.670.

A. Dadlani, K. Madan, and J. P. S. Sawhney, “Ambulatory blood pressure monitoring in clinical practice,” Indian Heart J., vol. 71, no. 1, pp. 91–97, 2019, doi: https://doi.org/10.1016/j.ihj.2018.11.015.

A. Abnormal, A. Algorithm, and S. Early, “Multimedia Appendix 2,” pp. 0–1.

G. Wang, S. Zhou, S. Rezaei, X. Liu, and A. Huang, “An Ambulatory Blood Pressure Monitor Mobile Health System for Early Warning for Stroke Risk: Longitudinal Observational Study.,” JMIR mHealth uHealth, vol. 7, no. 10, p. e14926, Oct. 2019, doi: 10.2196/14926.

A. Sujiwa, “Design an Internet of Things-Based Blood Pressure Detector and Monitor,” BEST J. Appl. Electr. Sci. Technol., vol. 5, no. 1, pp. 25–32, 2023, doi: 10.36456/best.vol5.no1.7188.

A. Hiwale and U. Chaskar, Design and Development of IOT based Blood Pressure Measurement system. 2022. doi: 10.1109/ICCCNT54827.2022.9984292.

N. Hashim, N. Norddin, F. Idris, S. N. I. M. Yusoff, and M. Zahari, “IoT blood pressure monitoring system,” Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 3, pp. 1384–1390, 2020, doi: 10.11591/ijeecs.v19.i3.pp1384-1390.

G. E. Saputro, Yohandri, Mairizwan, and E. Yuniarti, “Iot-Based Blood Pressure and Body Temperature Monitoring System,” Int. J. Pillar Phys., vol. 15, no. 2, pp. 129–138, 2022.

K. Shihab, D. Perdana, and S. Sussi, “Design and Implementation of IoT Based Blood Pressure Monitoring Tools,” Int. J. Simul. Syst. Sci. Technol., pp. 1–6, 2020, doi: 10.5013/ijssst.a.21.01.03.

M. Compton, “Standard deviation,” Cargo Syst., vol. 29, no. 4, p. 39, 2002, doi: 10.3109/9780203502778-11.

S. El Omda and S. R. Sergent, “Definition / Introduction,” Wolfram Mathword, pp. 4–7, 2024.

L. Thijs et al., “The ambulatory blood pressure in normotensive and hypertensive subjects: results from an international database,” Neth. J. Med., vol. 46, no. 2, pp. 106–114, 1995, doi: https://doi.org/10.1016/0300-2977(94)00057-G.

R. A. Sánchez et al., “Ambulatory blood pressure monitoring over 24 h: A Latin American Society of Hypertension position paper-accessibility, clinical use and cost effectiveness of ABPM in Latin America in year 2020.,” J. Clin. Hypertens. (Greenwich)., vol. 22, no. 4, pp. 527–543, Apr. 2020, doi: 10.1111/jch.13816.

Published
2024-03-19
How to Cite
[1]
A. Sari, P. C. N., M. R. Mak’ruf, H. G. Ariswati, M. P. A. T. T.P., and A. M. Maghfiroh, “Design of Ambulatory Blood Pressure Monitoring for IOT-Based Hypertension Patients”, Teknokes, vol. 17, no. 1, pp. 37-42, Mar. 2024.
Section
Biomedical Engineering

Most read articles by the same author(s)