Exploration of Digital Filter on Cardiac Monitor through Carotid Pulse and PCG (Phonocardiogram)

  • Bahrurrizki Ramadhan Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • Endro Yulianto Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-3922-4429
  • Sari Lutfiyah Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-3922-4429
  • Wahyu Caesarendra Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam https://orcid.org/0000-0002-3922-4429
Keywords: GY-MAX 9814, Chebyshev Type II, Signal to Noise Ratio, Phonocardiogram


Heart defect early detection and correct diagnosis have become important healthcare priorities. Tools for monitoring cardiac problems are constantly being developed, with the PCG (Phonocardiogram) and Cardiac Monitor via Carotid Pulse essential for heart evaluation. Although condenser microphones embedded in electric stethoscopes have been used in past research as PCG sensors, more advancements are still required to reduce received noise. This study investigates how well a Chebyshev type-II digital filter works to reduce noise on the cardiac monitor using PCG and carotid pulse. The PCG sensor is the GY-MAX 9814 module, which is interfaced with an Arduino Uno microcontroller. Matlab, Visual Studio (used as a graph viewer), and Doppler Simulator (used as a phantom cardiac signal) are used. SNR (Signal to Noise Ratio) is used in the analysis to assess the effectiveness of two digital filter orders. The average SNR value for the Doppler Simulator is 0.001404 dB at order 2, however, it climbs dramatically to 18.60023 dB at level 4 according to the results of the SNR analysis. The average SNR value in human signals is 11.50718 dB before the filter, 0.001404 dB after the post-order 2 filter, and 12.0009 dB after the post-order 4 filter. According to the results, the digital filter of order 4 is more effective in reducing noise. This study highlights the possibility of an order 4 digital filter to improve the Cardiac Monitor through PCG and Carotid Pulse. Through enhanced signal quality, the creation of this gadget holds the potential for streamlining the identification of cardiac problems. Future developments in this technology could lead to more precise and trustworthy cardiac exams, which would help with early diagnosis and treatment of cardiovascular health.


Download data is not yet available.


M. N. Manjunatha, M. Venukumar, E. Raghavendra, M. Varsha, R. Sandeep, and A. A. Audre, “ECG and PPG Data Capture using Novel Three Lead Electrode,” Int. Conf. Curr. Trends Comput. Electr. Electron. Commun. CTCEEC 2017, pp. 495–498, 2018, doi: 10.1109/CTCEEC.2017.8455176.

R. Alvionita et al., “Design of Cardiac Monitor for Multi Parameters,” Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, no. February 2020, pp. 423–428, 2019, doi: 10.1109/ISEMANTIC.2019.8884264.

W. Caesarendra, T. Triwiyanto, H. G. Ariswati, A. R. Masnulula, and N. M. Firdaus, “Development of Cardiac Monitor Through Carotid Pulse, Phonocardiography and Electrocardiography,” J. Teknokes, vol. 15, no. 2, pp. 81–87, Jun. 2022, doi: 10.35882/JTEKNOKES.V15I2.132.

M. A. Jaber and D. Massicotte, “The JM-Filter to Detect Specific Frequency in Monitored Signal,” IEEE Trans. Signal Process., vol. 69, pp. 1468–1476, 2021, doi: 10.1109/TSP.2021.3053509.

S. Y. Lee, P. W. Huang, J. R. Chiou, C. Tsou, Y. Y. Liao, and J. Y. Chen, “Electrocardiogram and Phonocardiogram Monitoring System for Cardiac Auscultation,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1471–1482, 2019, doi: 10.1109/TBCAS.2019.2947694.

P. K. Sahoo, H. K. Thakkar, W. Y. Lin, P. C. Chang, and M. Y. Lee, “On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals,” Sensors, vol. 18, no. 2, Feb. 2018, doi: 10.3390/S18020379.

M. Ehnesh, P. Abatis, and F. S. Schlindwein, “A portable electrocardiogram for real-time monitoring of cardiac signals,” SN Appl. Sci., vol. 2, no. 8, Aug. 2020, doi: 10.1007/S42452-020-3065-9.

N. E. Reed and T. R. Reed, “Augmented phonocardiogram acquisition and analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6780 LNAI, pp. 618–627, 2011, doi: 10.1007/978-3-642-21852-1_71/COVER.

E. A. GONZÁLEZ-GALINDO, F. J. RÍOS-MENDOZA, J. K. CASTRO-PÉREZ, and F. J. DOMÍNGUEZ-ROMERO, “Development of an electronic stethoscope implementing filters with OPAM for the observation of cardiac signals using a graphical interface with an AD8232 module,” Rev. Ing. Eléctrica, pp. 1–14, Aug. 2023, doi: 10.35429/JEE.2023.

“Filter design for ECG signal processing,” Int. J. Front. Eng. Technol., vol. 4, no. 5, 2022, doi: 10.25236/IJFET.2022.040508.

D. K. Aboutabikh, D. I. Haidar, and D. N. Aboukerdah, “Design and implementation of a digital FIR notch filter for the ECG signals using FPGA,” Ijarcce, vol. 5, no. 1, pp. 452–456, Jan. 2016, doi: 10.17148/IJARCCE.2016.51112.

M. H. Baig, A. Rasool, and M. I. Bhatti, “Classification of electrocardiogram using SOM, LVQ and beat detection methods in localization of cardiac arrhythmias,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 2, pp. 1684–1687, 2001, doi: 10.1109/IEMBS.2001.1020539.

S. Guler, A. Golparvar, O. Ozturk, H. Dogan, and M. Kaya Yapici, “Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning,” Biomed. Phys. &Amp; Eng. Express, vol. 9, no. 2, Mar. 2023, doi: 10.1088/2057-1976/ACAF8A.

“Survey on Filtering Techniques Applied to ECG Signal,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 7S, pp. 9–11, May 2020, doi: 10.35940/IJITEE.G1003.0597S20.

M. Nosach, “Experimental research of digital filtering in the separation of breathing signals and heart contractions to assess the control of the driver’s condition,” J. Für Mobilität Und Verkehr, no. 4, pp. 45–51, Nov. 2019, doi: 10.34647/JMV.NR4.ID32.

V. S. Borges, E. G. Nepomuceno, C. A. Duque, and D. N. Butusov, “Some Remarks about Entropy of Digital Filtered Signals,” Entropy, vol. 22, no. 3, Mar. 2020, doi: 10.3390/E22030365.

H. S. Cho, B. Choi, and Y. J. Park, “Monitoring heart activity using ultra‐wideband radar,” Electron. Lett., vol. 55, no. 16, pp. 878–881, Aug. 2019, doi: 10.1049/EL.2019.1438.

D. N. Purnamasari, K. A. Wibisono, and H. Sukri, “Digital Moving Average Filter Application for Echo Signals and Temperature,” E3S Web Conf., vol. 328, Dec. 2021, doi: 10.1051/E3SCONF/202132802007.

V. M. Shervegar, “Phonocardiogram event-based delineation method using continuous wavelet transform,” Int. J. Health Sci. (Qassim)., pp. 4039–4054, Jun. 2022, doi: 10.53730/IJHS.V6NS4.9032.

M. Al-Yoonus, M. H. Alhabib, M. Z. Nayef Al-Dabagh, and M. F. L. Abdullah, “Motion artifacts reduction in cardiac pulse signal acquired from video imaging,” Int. J. Electr. Comput. Eng., vol. 10, no. 6, p. 5687, Dec. 2020, doi: 10.11591/ijece.v10i6.pp5687-5693.

J. M. Medeiros, “Development of a Heart Rate Variability analysis tool,” 2010, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

J. Kim, G. Park, and B. Suh, “Classification of Phonocardiogram Recordings using Vision Transformer Architecture,” Comput. Cardiol. Conf., vol. 2022-September, 2022, doi: 10.22489/CINC.2022.084.

A. McDonald, M. J. F. Gales, and A. Agarwal, “Detection of Heart Murmurs in Phonocardiograms with Parallel Hidden Semi-Markov Models,” Comput. Cardiol. Conf., vol. 2022-September, 2022, doi: 10.22489/CINC.2022.020.

X. Wei, B. Yin, and Z. Zhu, “Noise Filtering Design of Non-intrusive Electrical Monitoring System,” Proc. 2016 4th Int. Conf. Mach. Mater. Inf. Technol. Appl., 2016, doi: 10.2991/ICMMITA-16.2016.292.

Z. Wang, B. Jin, S. Li, F. Zhang, and W. Zhang, “ECG-grained Cardiac Monitoring Using UWB Signals,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 6, no. 4, Jan. 2023, doi: 10.1145/3569503.

M. Premkumar, S. Sathiyapriya, M. Arun, and V. Sachan, “Medical Signal Processing via Digital Filter and Transmission Reception Using Cognitive Radio Technology,” Trait. Du Signal, vol. 39, no. 4, pp. 1357–1362, Aug. 2022, doi: 10.18280/TS.390429.

A. Marjaninejad, F. Almasganj, and A. J. Sheikhzadeh, “Online signal to noise ratio improvement of ECG signal based on EEMD of synchronized ECG beats,” 2014 21st Iran. Conf. Biomed. Eng. ICBME 2014, pp. 113–118, Feb. 2011, doi: 10.1109/ICBME.2014.7043904.

F. L. Mvuh, C. O. V. Ebode Ko’a, and B. Bodo, “Multichannel high noise level ECG denoising based on adversarial deep learning,” Sci. Reports 2023 141, vol. 14, no. 1, pp. 1–13, Jan. 2024, doi: 10.1038/s41598-023-50334-7.

Y. Zhang, S. Wei, C. Di Maria, and C. Liu, “Using Lempel–Ziv Complexity to Assess ECG Signal Quality,” J. Med. Biol. Eng., vol. 36, no. 5, p. 625, Oct. 2016, doi: 10.1007/S40846-016-0165-5.

M. Welvaert and Y. Rosseel, “On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data,” PLoS One, vol. 8, no. 11, Nov. 2013, doi: 10.1371/JOURNAL.PONE.0077089.

R. M. P. Et. al., “Optimal Parameter Selection for DWT based PCG Denoising,” Turkish J. Comput. Math. Educ., vol. 12, no. 10, pp. 7521–7532, Apr. 2021, doi: 10.17762/TURCOMAT.V12I10.5658.

M. Rouis, A. Ouafi, and S. Sbaa, “Optimal level and order detection in wavelet decomposition for PCG signal denoising,” Biomed. Tech., vol. 64, no. 2, pp. 163–176, Apr. 2019, doi: 10.1515/BMT-2018-0001/MACHINEREADABLECITATION/RIS.

How to Cite
B. Ramadhan, E. Yulianto, S. Lutfiyah, and W. Caesarendra, “Exploration of Digital Filter on Cardiac Monitor through Carotid Pulse and PCG (Phonocardiogram)”, Teknokes, vol. 17, no. 1, pp. 69-76, Mar. 2024.
Biomedical Engineering